Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 311
Filtrar
1.
BMC Genomics ; 25(1): 362, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609856

RESUMO

BACKGROUND: Rose is recognized as an important ornamental plant worldwide, and it is also one of the most widely used flowers in gardens. At present, the improvement of rose traits is still difficult and uncertain, and molecular breeding can provide new ideas for the improvement of modern rose varieties. Somatic embryos are quite good receptors for genetic transformation. However, little is known about the molecular mechanisms underlying during the regeneration process of rose somatic embryos. To elucidate the molecular regulation mechanism of somatic embryo plantlet regeneration, the relationship between the differences in traits of the two different regenerated materials and the significantly differentially expressed genes (DEGs) related to phytohormone pathways in the process of regeneration were be investigated. RESULTS: These representative two regenerated samples from single-piece cotyledonary somatic embryo (SPC) culture of Rosa hybrida 'John F. Kennedy', were harvested for transcriptome analysis, with the SPC explants at the initial culture (Day 0) as the control. The differentially expressed genes (DEGs) in the materials from two different types for regeneration approach (SBF type: the regeneration approach type of single bud formed from SPC explants; MBF type: the regeneration approach type of multiple buds formed from SPC explants) were be screened by means of the transcriptome sequencing technology. In this study, a total of about 396.24 million clean reads were obtained, of which 78.95-82.92% were localized to the reference genome, compared with the initial material (CK sample), there were 5594 specific genes in the material of SBF type and 6142 specific genes in the MBF type. The DEGs from the SBF type material were mainly concentrated in the biological processes of GO terms such as phytohormones, substance transport, cell differentiation, and redox reaction. The KEGG enrichment analysis revealed these DEGs were more active in ubiquinone and other terpenoid-quinone biosynthesis, fatty acid elongation, steroid biosynthesis, and glycosphingolipid biosynthesis-globo and isoglobo series. In contrast, the DEGs induced by the MBF type material were mainly associated with the biological processes such as phytohormones, phosphorylation, photosynthesis and signal transduction. According to KEGG analysis, these DEGs of MBF type were significantly enriched in the porphyrin and chlorophyll metabolism, brassinosteroid biosynthesis, carotenoid biosynthesis, and peroxisome. Furthermore, the results from the phytohormone pathways analysis showed that the auxin-responsive factor SAUR and the cell wall modifying enzyme gene XTH were upregulated for expression but the protein phosphatase gene PP2C was downregulated for expression in SBF type; the higher expression of the ethylene receptor ETR, the ethylene transduction genes EBF1/2, the transcription factor EIN3, and the ethylene-responsive transcription factor ERF1/2 were induced by MBF type. CONCLUSIONS: According to the GO and KEGG analysis, it indicated the DEGs between two different regenerated materials from somatic embryos were significantly different which might be causing morphological differences. That was somatic embryos from Rosa hybrida 'John F. Kennedy' could regenerate plantlet via both classic somatic embryogenesis (seed-like germination) and organogenesis, cotyledonary somatic embryos should be considered as one kind of intermediate materials similiar to callus, rather than the indicator materials for somatic embryogenesis.


Assuntos
Reguladores de Crescimento de Plantas , Rosa , Rosa/genética , Etilenos , Regeneração , Desenvolvimento Embrionário , Fatores de Transcrição
2.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612838

RESUMO

Petal blotch is a specific flower color pattern commonly found in angiosperm families. In particular, Rosa persica is characterized by dark red blotches at the base of yellow petals. Modern rose cultivars with blotches inherited the blotch trait from R. persica. Therefore, understanding the mechanism for blotch formation is crucial for breeding rose cultivars with various color patterns. In this study, the metabolites and genes responsible for the blotch formation in R. persica were identified for the first time through metabolomic and transcriptomic analyses using LC-MS/MS and RNA-seq. A total of 157 flavonoids were identified, with 7 anthocyanins as the major flavonoids, namely, cyanidin 3-O-(6″-O-malonyl) glucoside 5-O-glucoside, cyanidin-3-O-glucoside, cyanidin 3-O-galactoside, cyanidin O-rutinoside-O-malonylglucoside, pelargonidin 3-O-glucoside, pelargonidin 3,5-O-diglucoside, and peonidin O-rutinoside-O-malonylglucoside, contributing to pigmentation and color darkening in the blotch parts of R. persica, whereas carotenoids predominantly influenced the color formation of non-blotch parts. Zeaxanthin and antheraxanthin mainly contributed to the yellow color formation of petals at the semi-open and full bloom stages. The expression levels of two 4-coumarate: CoA ligase genes (Rbe014123 and Rbe028518), the dihydroflavonol 4-reductase gene (Rbe013916), the anthocyanidin synthase gene (Rbe016466), and UDP-flavonoid glucosyltransferase gene (Rbe026328) indicated that they might be the key structural genes affecting the formation and color of petal blotch. Correlation analysis combined with weighted gene co-expression network analysis (WGCNA) further characterized 10 transcription factors (TFs). These TFs might participate in the regulation of anthocyanin accumulation in the blotch parts of petals by modulating one or more structural genes. Our results elucidate the compounds and molecular mechanisms underlying petal blotch formation in R. persica and provide valuable candidate genes for the future genetic improvement of rose cultivars with novel flower color patterns.


Assuntos
Antocianinas , Rosa , Humanos , Rosa/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem , Melhoramento Vegetal , Perfilação da Expressão Gênica , Flavonoides , Glucosídeos
3.
Genes (Basel) ; 15(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38540336

RESUMO

The flower's color is regarded as one of the most outstanding features of the rose. Rosa praelucens Byhouwer, an endemic and critically endangered decaploid wild rose species, is abundant in phenotypic diversity, especially in flower color variation, from white to different degrees of pink. The mechanism underlying this variation, e.g., the level of petal-color-related genes, is worth probing. Seven candidate reference genes for qRT-PCR analysis, including tubulin α chain (TUBA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), histone H2B (Histone2A), eukaryotic translation elongation factor 1-α (EEF1A), 60S ribosomal protein (RPL37), eukaryotic translation initiation factor 1-α (EIF1A), and aquaporins (AQP), were detected from the transcriptome datasets of full blooming flowers of white-petaled and pink-petaled individuals, and their expression stabilities were evaluated through qRT-PCR analysis. According to stability rankings analysis, EEF1A showed the highest stability and could be chosen as the most suitable reference gene. Moreover, the reliability of EEF1A was demonstrated via qRT-PCR analysis of six petal-color-related target genes, the expression patterns of which, through EEF1A normalization, were found to be consistent with the findings of transcriptome analysis. The result provides an optimal reference gene for exploring the expression level of petal-color-related genes in R. praelucens, which will accelerate the dissection of petal-color-variation mechanisms in R. praelucens.


Assuntos
Rosa , Humanos , Rosa/genética , Reprodutibilidade dos Testes , Perfilação da Expressão Gênica , Transcriptoma , Reação em Cadeia da Polimerase
4.
PeerJ ; 12: e16929, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435988

RESUMO

Rosa rugosa, a renowned ornamental plant, is cultivated for its essential oil containing valuable monoterpenes, sesquiterpenes, and other compounds widely used in the floriculture industry. Farnesyl diphosphate synthase (FPPS) is a key enzyme involved in the biosynthesis of sesquiterpenes and triterpenes for abiotic or biotic stress. In this study, we successfully cloned and characterized a full-length FPPS- encoding cDNA identified as RrFPPS1 using RT-PCR from R. rugosa. Phylogenetic analysis showed that RrFPPS1 belonged to the angiosperm-FPPS clade. Transcriptomic and RT-qPCR analyses revealed that the RrFPPS1 gene had tissue-specific expression patterns. Subcellular localization analysis using Nicotiana benthamiana leaves showed that RrFPPS1 was a cytoplasmic protein. In vitro enzymatic assays combined with GC-MS analysis showed that RrFPPS1 produced farnesyl diphosphate (FPP) using isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) as substrates to provide a precursor for sesquiterpene and triterpene biosynthesis in the plant. Additionally, our research found that RrFPPS1 was upregulated under salt treatment. These substantial findings contribute to an improved understanding of terpene biosynthesis in R. rugosa and open new opportunities for advancements in horticultural practices and fragrance industries by overexpression of the RrFPPS1 gene in vivo increased FPP production and subsequently led to elevated sesquiterpene yields in the future. The knowledge gained from this study can potentially lead to the development of enhanced varieties of R. rugosa with improved aroma, medicinal properties, and resilience to environmental stressors.


Assuntos
Hemiterpenos , Compostos Organofosforados , Rosa , Sesquiterpenos , Geraniltranstransferase/genética , Rosa/genética , Filogenia , Estresse Salino , Clonagem Molecular
5.
Plant Cell Environ ; 47(4): 1185-1206, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38164066

RESUMO

Ethylene-responsive factors (ERFs) participate in a wide range of physiological and biological processes. However, many of the functions of ERFs in cold stress responses remain unclear. We, therefore, characterised the cold responses of RmERF54 in Rosa multiflora, a rose-related cold-tolerant species. Overexpression of RmERF54, which is a nuclear transcription factor, increases the cold resistance of transgenic tobacco and rose somatic embryos. In contrast, virus-induced gene silencing (VIGS) of RmERF54 increased cold susceptibility of R. multiflora. The overexpression of RmERF54 resulted in extensive transcriptional reprogramming of stress response and antioxidant enzyme systems. Of these, the levels of transcripts encoding the PODP7 peroxidase and the cold-related COR47 protein showed the largest increases in the somatic embryos with ectopic expression of RmERF54. RmERF54 binds to the promoters of the RmPODP7 and RmCOR47 genes and activates expression. RmERF54-overexpressing lines had higher antioxidant enzyme activities and considerably lower levels of reactive oxygen species. Opposite effects on these parameters were observed in the VIGS plants. RmERF54 was identified as a target of Dehydration-Responsive-Element-Binding factor (RmDREB1E). Taken together, provide new information concerning the molecular mechanisms by which RmERF54 regulates cold tolerance.


Assuntos
Proteínas de Plantas , Rosa , Proteínas de Plantas/metabolismo , Rosa/genética , Antioxidantes/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resposta ao Choque Frio , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico
6.
J Exp Bot ; 75(5): 1633-1646, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38180121

RESUMO

The petals of ornamental plants such as roses (Rosa spp.) are the most economically important organs. This delicate, short-lived plant tissue is highly susceptible to pathogens, in large part because the walls of petal cells are typically thinner and more flexible compared with leaf cells, allowing the petals to fold and bend without breaking. The cell wall is a dynamic structure that rapidly alters its composition in response to pathogen infection, thereby reinforcing its stability and boosting plant resistance against diseases. However, little is known about how dynamic changes in the cell wall contribute to resistance to Botrytis cinerea in rose petals. Here, we show that the B. cinerea-induced transcription factor RhbZIP17 is required for the defense response of rose petals. RhbZIP17 is associated with phenylpropanoid biosynthesis and binds to the promoter of the lignin biosynthesis gene RhCAD1, activating its expression. Lignin content showed a significant increase under gray mold infection compared with the control. RhCAD1 functions in the metabolic regulation of lignin production and, consequently, disease resistance, as revealed by transient silencing and overexpression in rose petals. The WRKY transcription factor RhWRKY30 is also required to activate RhCAD1 expression and enhance resistance against B. cinerea. We propose that RhbZIP17 and RhWRKY30 increase lignin biosynthesis, improve the resistance of rose petals to B. cinerea, and regulate RhCAD1 expression.


Assuntos
Rosa , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Rosa/genética , Lignina/metabolismo , Regulação da Expressão Gênica , Botrytis/fisiologia , Doenças das Plantas/genética , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas
7.
PeerJ ; 12: e16568, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38188163

RESUMO

Background: Basic helix-loop-helix (bHLH) transcription factors are involved in plant growth and development, secondary metabolism, and abiotic stress responses have been studied in a variety of plants. Despite their importance in plant biology, the roles and expression patterns of bHLH family genes in Rosa persica have not been determined. Methods: In this study, the RbebHLH family genes were systematically analyzed using bioinformatics methods, and their expression patterns under low-temperature stress were analyzed by transcriptome and related physiological index measurements. Results: In total, 142 RbebHLHs were identified in the genome of R. persica, distributed on seven chromosomes. Phylogenetic analysis including orthologous genes in Arabidopsis divided RbebHLHs into 21 subfamilies, with similar structures and motifs within a subfamily. A collinearity analysis revealed seven tandem duplications and 118 segmental duplications in R. persica and 127, 150, 151, 172, and 164 segmental duplications between R. persica and Arabidopsis thaliana, Prunus mume, Fragaria vesca, Rosa chinensis, and Prunus persica, respectively. A number of cis-regulatory elements associated with abiotic stress response and hormone response were identified in RbebHLHs, and 21 RbebHLHs have potential interactions with the CBF family. In addition, the expression results showed that part of bHLH may regulate the tolerance of R. persica to low-temperature stress through the jasmonic acid and pathway. Transcriptomic data showed that the expression levels of different RbebHLHs varied during overwintering, and the expression of some RbebHLHs was significantly correlated with relative conductivity and MDA content, implying that RbebHLHs play important regulatory roles in R. persica response to low-temperature stress. Overall, this study provides valuable insights into the study of RbebHLHs associated with low-temperature stress.


Assuntos
Arabidopsis , Rosa , Filogenia , Rosa/genética , Temperatura , Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
8.
Plant J ; 117(4): 1264-1280, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37964640

RESUMO

Rosa roxburghii and Rosa sterilis, two species belonging to the Rosaceae family, are widespread in the southwest of China. These species have gained recognition for their remarkable abundance of ascorbate in their fresh fruits, making them an ideal vitamin C resource. In this study, we generated two high-quality chromosome-scale genome assemblies for R. roxburghii and R. sterilis, with genome sizes of 504 and 981.2 Mb, respectively. Notably, we present a haplotype-resolved, chromosome-scale assembly for diploid R. sterilis. Our results indicated that R. sterilis originated from the hybridization of R. roxburghii and R. longicuspis. Genome analysis revealed the absence of recent whole-genome duplications in both species and identified a series of duplicated genes that possibly contributing to the accumulation of flavonoids. We identified two genes in the ascorbate synthesis pathway, GGP and GalLDH, that show signs of positive selection, along with high expression levels of GDP-d-mannose 3', 5'-epimerase (GME) and GDP-l-galactose phosphorylase (GGP) during fruit development. Furthermore, through co-expression network analysis, we identified key hub genes (MYB5 and bZIP) that likely regulate genes in the ascorbate synthesis pathway, promoting ascorbate biosynthesis. Additionally, we observed the expansion of terpene synthase genes in these two species and tissue expression patterns, suggesting their involvement in terpenoid biosynthesis. Our research provides valuable insights into genome evolution and the molecular basis of the high concentration of ascorbate in these two Rosa species.


Assuntos
Rosa , Rosa/genética , Rosa/metabolismo , Ácido Ascórbico/metabolismo , Genes de Plantas , Cromossomos , Evolução Molecular
9.
Int J Mol Sci ; 24(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38003495

RESUMO

The basic/helix-loop-helix (bHLH) family is a major family of transcription factors in plants. Although it has been reported that bHLH plays a defensive role against pathogen infection in plants, there is no comprehensive study on the bHLH-related defence response in rose (Rosa sp.). In this study, a genome-wide analysis of bHLH family genes (RcbHLHs) in rose was carried out, including their phylogenetic relationships, gene structure, chromosome localization and collinearity analysis. Via phylogenetic analysis, a total of 121 RcbHLH genes in the rose genome were divided into 21 sub-groups. These RcbHLHs are unevenly distributed in all 7 chromosomes of rose. The occurrence of gene duplication events indicates that whole-genome duplication and segmental duplication may play a key role in gene duplication. Ratios of non-synonymous to synonymous mutation frequency (Ka/Ks) analysis showed that the replicated RcbHLH genes mainly underwent purification selection, and their functional differentiation was limited. Gene expression analysis showed that 46 RcbHLHs were differentially expressed in rose petals upon B. cinerea infection. It is speculated that these RcbHLHs are candidate genes that regulate the response of rose plants to B. cinerea infection. Virus-induced gene silencing (VIGS) confirmed that RcbHLH112 in rose is a susceptibility factor for infection with B. cinerea. This study provides useful information for further study of the functions of the rose bHLH gene family.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Rosa , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Rosa/genética , Rosa/metabolismo , Filogenia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Duplicação Gênica , Regulação da Expressão Gênica de Plantas
10.
Nat Commun ; 14(1): 7106, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925502

RESUMO

The size of plant lateral organs is determined by well-coordinated cell proliferation and cell expansion. Here, we report that miR159, an evolutionarily conserved microRNA, plays an essential role in regulating cell division in rose (Rosa hybrida) petals by modulating cytokinin catabolism. We uncover that Cytokinin Oxidase/Dehydrogenase6 (CKX6) is a target of miR159 in petals. Knocking down miR159 levels results in the accumulation of CKX6 transcripts and earlier cytokinin clearance, leading to a shortened cell division period and smaller petals. Conversely, knocking down CKX6 causes cytokinin accumulation and a prolonged developmental cell division period, mimicking the effects of exogenous cytokinin application. MYB73, a R2R3-type MYB transcription repressor, recruits a co-repressor (TOPLESS) and a histone deacetylase (HDA19) to form a suppression complex, which regulates MIR159 expression by modulating histone H3 lysine 9 acetylation levels at the MIR159 promoter. Our work sheds light on mechanisms for ensuring the correct timing of the exit from the cell division phase and thus organ size regulation by controlling cytokinin catabolism.


Assuntos
Rosa , Rosa/genética , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Regiões Promotoras Genéticas , Citocininas/farmacologia , Regulação da Expressão Gênica de Plantas , Flores/fisiologia
11.
Genes (Basel) ; 14(10)2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37895306

RESUMO

Lipoxygenases (LOX) play pivotal roles in plant resistance to stresses. However, no study has been conducted on LOX gene identification at the whole genome scale in rose (Rosa chinensis). In this study, a total of 17 RcLOX members were identified in the rose genome. The members could be classified into three groups: 9-LOX, Type I 13-LOX, and Type II 13-LOX. Similar gene structures and protein domains can be found in RcLOX members. The RcLOX genes were spread among all seven chromosomes, with unbalanced distributions, and several tandem and proximal duplication events were found among RcLOX members. Expressions of the RcLOX genes were tissue-specific, while every RcLOX gene could be detected in at least one tissue. The expression levels of most RcLOX genes could be up-regulated by aphid infestation, suggesting potential roles in aphid resistance. Our study offers a systematic analysis of the RcLOX genes in rose, providing useful information not only for further gene cloning and functional exploration but also for the study of aphid resistance.


Assuntos
Rosa , Rosa/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Cromossomos de Plantas/metabolismo
12.
Biomolecules ; 13(10)2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37892150

RESUMO

Oil-bearing Rosa rugosa are popular in the essential oil and perfume markets. The similar botanical characteristics between high-oil-yield or low-oil-yield cultivars are confusing and it is hard for farmers or breeders to identify the high-oil-yield cultivar by phenotype difference. High-resolution melting (HRM) analysis of simple sequence repeats (SSRs) can construct accurate DNA fingerprints quickly, which was shown to be effective for identification of closely related cultivars of R. rugosa. Optimization of HRM-SSR indicated that the 10 µL HRM reaction mixture containing 20 ng of genomic DNA of R. rugosa and 0.75 µL of 10 µmol/L of each primer with an annealing temperature of 64 °C was a robust SSR genotyping protocol. Using this protocol, 9 polymorphic SSR markers with 3-9 genotypes among the 19 R. rugosa cultivars were identified. The top three polymorphic makers SSR9, SSR12 and SSR19 constructed a fingerprint of all cultivars, and the rare insertion in the flanking sequences of the repeat motif of SSR19 generated three characteristic genotypes of three high-oil-yield cultivars. These results may be economical and practical for the identification of high-oil-yield R. rugosa and be helpful for the selection and breeding of oil-bearing roses.


Assuntos
Óleos Voláteis , Rosa , Rosa/genética , Melhoramento Vegetal , Reação em Cadeia da Polimerase , Repetições de Microssatélites/genética
13.
Sci Rep ; 13(1): 17795, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853072

RESUMO

Rosa damascena is one of the most important medicinal and ornamental plants in Iran which is tolerant of salinity to some extent. However, the selection of genotypes that are more tolerant to salinity will influence on Damask cultivation in salt stress-affected regions. For this purpose, a factorial experiment in a completely randomized design with three replicates was performed under in vitro conditions on four Damask rose genotypes (Atashi, Bi-Khar, Chahar-Fasl and Kashan) at 5 concentrations of NaCl (0, 25, 50, 75, and 100 mM), and the physico-chemical traits were measured 14 and 28 days after treatment.The results showed that Atashi genotype with high levels of Chl a, Chl b, total Chl content, carotenoids, relative leaf water content, proline, total soluble protein, TPC, TFC, TAA, and the highest increase in the activity of antioxidant enzymes such as GPX, APX, CAT, SOD, and POD as well as the lowest amount of hydrogen peroxide showed a better protection mechanism against oxidative damage than the other three genotypes (Bi-Khar, Chahar-Fasl and Kashan) in the 14th and 28th days by maintaining the constructive and induced activities of antioxidant enzymes, it was shown that Bi-Khar genotype had moderate tolerance and Kashan and Chahar-Fasl genotypes had low tolerance to salinity stress. In vitro selection methods can be used effectively for salt tolerant screening of Damask rose genotypes, although the same experiment should be conducted in open filed cultures to verify the in vitro experimental results.


Assuntos
Antioxidantes , Rosa , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio , Rosa/genética , Rosa/metabolismo , Genótipo , Estresse Salino/genética , Salinidade , Estresse Fisiológico/genética
14.
PLoS One ; 18(10): e0292634, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37797054

RESUMO

While European wild roses are abundant and widely distributed, their morphological taxonomy is complicated and ambiguous. In particular, the polyploid Rosa section Caninae (dogroses) is characterised by its unusual meiosis, causing simultaneous clonal and sexual transmission of sub-genomes. This hemisexual reproduction, which often co-occurs with vegetative reproduction, defies the standard definition of species boundaries. We analysed seven highly polymorphic microsatellite loci, scored for over 2 600 Rosa samples of differing ploidy, collected across Europe within three independent research projects. Based on their morphology, these samples had been identified as belonging to 21 dogrose and five other native rose species. We quantified the degree of clonality within species and at individual sampling sites. We then compared the genetic structure within our data to current rose morpho-systematics and searched for hemisexually co-inherited sets of alleles at individual loci. We found considerably fewer copies of identical multi-locus genotypes in dogroses than in roses with regular meiosis, with some variation recorded among species. While clonality showed no detectable geographic pattern, some genotypes appeared to be more widespread. Microsatellite data confirmed the current classification of subsections, but they did not support most of the generally accepted dogrose microspecies. Under canina meiosis, we found co-inherited sets of alleles as expected, but could not distinguish between sexually and clonally inherited sub-genomes, with only some of the detected allele combinations being lineage-specific.


Assuntos
Rosa , Rosa/genética , Genoma de Planta , Poliploidia , Ploidias , Europa (Continente) , Variação Genética
15.
Micron ; 174: 103524, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37657168

RESUMO

Three abiotic stresses, copper application (CS), mechanical rubbing (MS) and water deprivation (WS) applied on miniature rose bushes specifically activate the expression of the CuZn-Superoxide dismutase (SOD). The Cu/Zn-SOD protein immunodetected in the 4th internode was shown engaged in lignification in phloem, cambium and xylem cells. The SOD occurrence was detailed in the vessel associated cells (VACs), using immunogold labeling observed in transmission electron microscopy. The enzyme was detected in mitochondria, plastids, Golgi vesicles, endoplasmic reticulum and plasma membrane. In addition, in pit-fields without plasmodesmata linking vessel associated cells to vessels, the abiotic stresses increased the transfer apparatus volume. The content in unmethylatedpectins increased in wall ingrowths after CS and MS, but not in WS. In addition to the different localization, the SOD was differentially overexpressed according to the applied stress: an isoform detected at 17 kDa under CuSO4 application, two isoforms respectively detected at 20 and 17 kDa under MS and detected at 17 and 15 kDa under WS. Notably, the only 17 kDa isoform was detected in plasma membrane vesicles from plants submitted to the three stresses. Thus, by increasing the transfer apparatus development, the key role of VACs was emphasized in establishing an adaptative response to abiotic stresses, in miniature rose bushes. Additionally, it has been observed that the differential SOD localization under such stresses sustained the regulatory function of VACs in the transitory sink function of xylem.


Assuntos
Cobre , Mitocôndrias , Estresse Fisiológico , Membrana Celular , Microscopia Eletrônica de Transmissão , Superóxido Dismutase-1 , Rosa/genética , Rosa/metabolismo , Estresse Fisiológico/genética
16.
Plant Physiol Biochem ; 202: 107983, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37611488

RESUMO

Gene regulation via intragenic sequences is becoming more recognized in many eukaryotes. However, the intragenic sequences mediated gene expressions in response to environmental stimuli have been largely uncharacterized. Here, we showed that the first intron of RrKSN from the Rosa rugosa cultivar 'Purple branch' had a positive effect on RrKSN expression, and the effect depends on its position and orientation. Further analyses revealed that the four adjacent cis-elements (T)CGATT/AATCG(A) within the first intron were critical for the positive regulation, and the RrKSN promotion was significantly suppressed with mutations of these elements. These cis-elements were further evidenced as binding sites for RrARR1, the homologous of Arabidopsis type-B ARABIDOPSIS RESPONSE REGULATOR 1 (ARR1) transcription factor. The first intron-mediated RrKSN expression was enhanced with over-expressing of RrARR1, but abolished with RrARR1 silencing in rose seedlings. Moreover, the expression difference of RrKSN between 16°C and 28°C was eliminated along with RrARR1-silencing. Taken together, these results suggested both RrARR1 and its binding elements are required for the first intron-mediated RrKSN expression in response to varying temperatures. Therefore, our results reveal a unique intragenic regulation mechanism of gene expression by which plants perceive the signal of ambient temperature in rose.


Assuntos
Rosa , Rosa/genética , Rosa/fisiologia , Íntrons , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Transcrição Gênica , Regulação da Expressão Gênica de Plantas , Temperatura , Citocininas/metabolismo , Fatores de Transcrição/metabolismo , Flores/metabolismo
17.
Plant Sci ; 335: 111678, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37385384

RESUMO

Rosa chinensis is an important economic and ornamental crop, but powdery mildew greatly reduces its ornamental and economic value. The RcCPR5 gene, encoding a constitutive expressor of pathogenesis-related genes, has two splicing variants in R. chinensis. Compared with RcCPR5-1, RcCPR5-2 has a large C-terminal deletion. During disease development, RcCPR5-2 responded quickly and coordinated with RcCPR5-1 to resist the invasion of the powdery mildew pathogen. In virus-induced gene silencing experiments, down-regulation of RcCPR5 improved the resistance of R. chinensis to powdery mildew. This was confirmed to be broad-spectrum resistance. In the absence of pathogen infection, RcCPR5-1 and RcCPR5-2 formed homodimers and heterodimers to regulate plant growth; but when infected by the powdery mildew pathogen, the RcCPR5-1 and RcCPR5-2 complexes disassociated and released RcSIM/RcSMR to induce effector-triggered immunity, thereby inducing resistance to pathogen infection.


Assuntos
Ascomicetos , Rosa , Proteínas de Plantas/genética , Rosa/genética , Resistência à Doença/genética , Ascomicetos/fisiologia , Erysiphe , Doenças das Plantas/genética
18.
BMC Plant Biol ; 23(1): 318, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316771

RESUMO

BACKGROUND: The genus Rosa (Rosaceae) contains approximately 200 species, most of which have high ecological and economic values. Chloroplast genome sequences are important for studying species differentiation, phylogeny, and RNA editing. RESULTS: In this study, the chloroplast genomes of three Rosa species, Rosa hybrida, Rosa acicularis, and Rosa rubiginosa, were assembled and compared with other reported Rosa chloroplast genomes. To investigate the RNA editing sites in R. hybrida (commercial rose cultivar), we mapped RNA-sequencing data to the chloroplast genome and analyzed their post-transcriptional features. Rosa chloroplast genomes presented a quadripartite structure and had highly conserved gene order and gene content. We identified four mutation hotspots (ycf3-trnS, trnT-trnL, psbE-petL, and ycf1) as candidate molecular markers for differentiation in the Rosa species. Additionally, 22 chloroplast genomic fragments with a total length of 6,192 bp and > 90% sequence similarity with their counterparts were identified in the mitochondrial genome, representing 3.96% of the chloroplast genome. Phylogenetic analysis including all sections and all subgenera revealed that the earliest divergence in the chloroplast phylogeny roughly distinguished species of sections Pimpinellifoliae and Rosa and subgenera Hulthemia. Moreover, DNA- and RNA-sequencing data revealed 19 RNA editing sites, including three synonymous and 16 nonsynonymous, in the chloroplast genome of R. hybrida that were distributed among 13 genes. CONCLUSIONS: The genome structure and gene content of Rosa chloroplast genomes are similar across various species. Phylogenetic analysis based on the Rosa chloroplast genomes has high resolution. Additionally, a total of 19 RNA editing sites were validated by RNA-Seq mapping in R. hybrida. The results provide valuable information for RNA editing and evolutionary studies of Rosa and a basis for further studies on genomic breeding of Rosa species.


Assuntos
Genoma de Cloroplastos , Rosa , Rosa/genética , Genoma de Cloroplastos/genética , Filogenia , Edição de RNA/genética , Melhoramento Vegetal , RNA
19.
Bull Entomol Res ; 113(4): 537-545, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37325903

RESUMO

The Ceratitis FARQ species complex consists of four highly destructive agricultural pests of Africa, namely C. fasciventris, C. anonae, C. rosa, and C. quilicii. The members of the complex are considered very closely related and the species limits among them are rather obscure. Their economic significance and the need for developing biological methods for their control makes species identification within the complex an important issue, which has become clear that can only be addressed by multidisciplinary approaches. Chromosomes, both mitotic and polytene, can provide a useful tool for species characterization and phylogenetic inference among closely related dipteran species. In the current study, we present the mitotic karyotype and the polytene chromosomes of C. rosa and C. quilicii together with in situ hybridization data. We performed a comparative cytogenetic analysis among the above two species and C. fasciventris, the only other cytogenetically studied member of the FARQ complex, by comparing the mitotic complement and the banding pattern of the polytene chromosomes of each species to the others, as well as by studying the polytene chromosomes of hybrids between them. Our analysis revealed no detectable chromosomal rearrangements discriminating the three FARQ members studied, confirming their close phylogenetic relationships.


Assuntos
Rosa , Tephritidae , Animais , Tephritidae/genética , Rosa/genética , Filogenia , Cariotipagem , Cariótipo
20.
Plant Physiol ; 193(2): 1695-1712, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37364582

RESUMO

NAC (NAM, ATAF1,2, and CUC2) transcription factors (TFs) play critical roles in controlling plant growth, development, and abiotic stress responses. However, few studies have examined NAC proteins related to drought stress tolerance in rose (Rosa chinensis). Here, we identified a drought- and abscisic acid (ABA)-induced NAC TF, RcNAC091, that localizes to the nucleus and has transcriptional activation activity. Virus-induced silencing of RcNAC091 resulted in decreased drought stress tolerance, and RcNAC091 overexpression had the opposite effect. Specifically, ABA mediated RcNAC091-regulated drought tolerance. A transcriptomic comparison showed altered expression of genes involved in ABA signaling and oxidase metabolism in RcNAC091-silenced plants. We further confirmed that RcNAC091 directly targets the promoter of RcWRKY71 in vivo and in vitro. Moreover, RcWRKY71-slienced rose plants were not sensitive to both ABA and drought stress, whereas RcWRKY71-overexpressing plants were hypersensitive to ABA, which resulted in drought-tolerant phenotypes. The expression of ABA biosynthesis- and signaling-related genes was impaired in RcWRKY71-slienced plants, suggesting that RcWRKY71 might facilitate the ABA-dependent pathway. Therefore, our results show that RcWRKY71 is transcriptionally activated by RcNAC091, which positively modulates ABA signaling and drought responses. The results of this study provide insights into the roles of TFs as functional links between RcNAC091 and RcWRKY71 in priming resistance; our findings also have implications for the approaches to enhance the drought resistance of roses.


Assuntos
Ácido Abscísico , Rosa , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Rosa/genética , Rosa/metabolismo , Resistência à Seca , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , Secas , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...